Chúc mừng nhóm sinh viên Nguyễn Nhật Quân, Phạm Trung Thành, Trần Nguyễn Tiến Thành sinh viên ngành An toàn thông tin cùng nhóm nghiên cứu Phòng thí nghiệm An toàn thông tin (InsecLab) đã có bài báo nghiên cứu về khai thác lỗ hổng trong hợp đồng thông minh được chấp nhận đăng tại Hội nghị khoa học quốc tế The 13th International Symposium on Information and Communication Technology (SOICT 2024).
Bài báo khoa học là kết quả đề tài nghiên cứu được các bạn sinh viên thực hiện với nhóm nghiên cứu InSecLab trong thời gian bạn tham gia nghiên cứu khoa học về khai thác lỗ hổng trong hợp đồng thông minh dựa trên các kỹ thuật fuzzing và học tăng cường tại Phòng thí nghiệm An toàn thông tin.
Tên bài báo: “MADFuzz: A Study on Automatic Exploitation of Smart Contract Vulnerabilities Using Multi-Agent Reinforcement Learning-guided Fuzzing”
Sinh viên thực hiện:
+ Trần Nguyễn Tiến Thành – An toàn thông tin (Chính quy 2022)
+ Phạm Trung Thành – An toàn thông tin (Chính quy 2022)
+ Nguyễn Nhật Quân – An toàn thông tin (Tài năng 2021)
Chủ đề nghiên cứu: Trí tuệ nhân tạo và An toàn thông tin
Giảng viên hướng dẫn:
– KS. Nguyễn Hữu Quyền
– ThS. Phan Thế Duy
– TS. Phạm Văn Hậu
Thông tin chung
Hội nghị SOICT 2024 là một hội nghị khoa học quốc tế bao gồm các lĩnh vực nghiên cứu quan trọng bao gồm Nền tảng AI và Dữ liệu lớn, Công nghệ mạng và truyền thông, Xử lý đa phương tiện, Kỹ thuật phần mềm, Ứng dụng AI, AI tạo sinh, Nghiên cứu và tối ưu hóa hoạt động ứng dụng, An toàn thông tin.
Hội nghị SOICT 2024 sẽ diễn ra tại Thành phố Đà Nẵng do Trường Công nghệ Thông tin và Truyền thông – ĐH Bách Khoa Hà Nội, Trường ĐH Khoa học Tự nhiên – ĐHQG TP. HCM, Trường ĐH Bách Khoa, ĐH Đà Nẵng phối hợp tổ chức vào ngày 13 – 15/12/2024.
Tóm tắt bài báo
Smart contracts, which serve as the backbone of decentralized applications (dApps), self-execute key functions on blockchain platforms. They currently manage assets valued in the trillions of dollars in the cryptocurrency space. However, their immutability after deployment makes them particularly vulnerable to exploitation if any weaknesses exist. Identifying and addressing these vulnerabilities is critical to avoiding significant financial and reputational damage. Fuzzing is a commonly used automated method for fast and efficient vulnerability detection. However, both traditional fuzzing techniques and those based on machine learning encounter challenges, such as selecting ineffective transaction sequences by generating them randomly or pre-generating them before running the fuzzer. This leads to a failure in updating transaction sequences based on the dynamical smart contract states during the fuzzing process. Additionally, some methods mutate test cases and store them in a pool, which becomes problematic when physical memory is no unlimited. In this paper, we present MADFuzz, a Multi-Agent Deep Reinforcement Learning (DRL)-based approach designed to address the challenges of smart contract fuzzing. To improve the selection of effective transaction sequences, we develop agents that dynamically generate optimal functions and arguments based on the current state of the smart contract. By utilizing DRL, our approach generates transaction sequences in real-time without the need for memory storage, efficiently overcoming the limitations of previous methods. Finally, we conduct experiments to compare MADFuzz with existing state-of-the-art techniques, and the results demonstrate that our approach significantly outperforms the competition.
Nguồn: Trường Đại học Công nghệ Thông tin, ĐHQG TPHCM.